

## Robust Scheduling and Flight Delays

Cynthia Barnhart Ying Zhu

**Industry Advisory Board/Airline Industry Consortium Joint Meeting** 

October 25, 2007 MIT Building 33, Room 116





## Outline

- Aircraft and passenger delays
- Delay propagation
  - Role of aircraft rotations
  - Role of flight schedules
- Optimization models to minimize delay propagation and its impact on passengers

## **DOT On-Time Performance Metric**

- Sources of passenger delays
  - Cancellations
  - Missed connections
  - Delayed flight
- DOT 15-minute on-time performance metric
  - Does not include passenger delays resulting from cancellations or from missed connections
  - An inadequate measure of passenger delays

## Comparison of Passenger and Flight Delays

|            | Average delay (minutes) |
|------------|-------------------------|
| Passengers | 25.6                    |
| Flights    | 15.4                    |
| Ratio      | 166%                    |

| Passenger         | Average delay | % Passengers           | % Total passenger delays        |
|-------------------|---------------|------------------------|---------------------------------|
| Disrupted         | 303 minutes   | 3.2%                   | 39%                             |
| Non-disrupted     | 16 minutes    | 96.8%                  | 61%                             |
| Passenger         | Average delay | % disrupted passengers | % of disrupted passenger delays |
| Same day<br>(SD)  | 185 minutes   | 78%                    | 48%                             |
| Overnight<br>(OV) | 721 minutes   | 22%                    | 52%                             |

# The Effect of Load Factor on Passenger Delay



Passengers, disrupted because of a flight cancellation, become increasingly more difficult to re-accommodate as load factors increase

#### What Can Be Done?

- Many things...
- One approach: create schedules less impacted by and/ or easier to recover from disruptions
  - > Robust aircraft routing and scheduling
    - Reduce the propagation of delays by re-designing aircraft routings
    - Reduce the number of passenger misconnections by adjusting departure times so that passenger connection times are correlated with the likelihood of a missed connection (disruption)
      - Add connection slack where it is need most

# Robust Aircraft Routing and Scheduling

- Objective
  - Reduce the propagation of delays by redesigning aircraft routings
- Solution Approach
  - Formulate and solve maintenance routing model that minimizes the expected propagation of delays subject to maintenance feasibility

## Delay Propagation

- Arrival delay might cause departure delay for the next flight leg that is using the same aircraft if there is not enough slack between consecutive flight legs
- Delay propagation might cause downstream schedule, passenger and crew disruptions (especially at hubs)



# Dampening Delay Propagation through Routing



## Computational Results

#### **Test Networks**

| Network | Num of flights | Num of strings |
|---------|----------------|----------------|
| N1      | 20             | 7,909,144      |
| N2      | 59             | 614,240        |
| N3      | 97             | 6,354,384      |
| N4      | 102            | 51,730,736     |

#### □ Model Building and Validation



#### □ Propagated delays (August 2000)

| Network | OldPD         | New PD | PD reduced | % of PD reduced |
|---------|---------------|--------|------------|-----------------|
| N1      | 6749          | 4923   | 1826       | 27%             |
| N2      | T2 4106 2548  |        | 1558       | 38%             |
| N3      | N3 8919 4113  |        | 4806       | 54%             |
| N4      | N4 14526 9921 |        | 6940       | 48%             |
| Total   | 34300         | 21505  | 15130      | 44%             |

## Results - Delays

## Total delays and on-time performance

|     | Total delay |         |          | on-time performance |        |         |
|-----|-------------|---------|----------|---------------------|--------|---------|
|     | >15 min     | >60 min | >120 min | 15 min              | 60 min | 120 min |
| Old | 22.3%       | 7.9%    | 2.9%     | 77.7%               | 92.1%  | 97.1%   |
| New | 20.7%       | 6.9%    | 2.6%     | 79.3%               | 93.1%  | 97.4%   |

### Passenger misconnects

| Network | Total num of D-pax | D-pax reduces | D-pax reduced (%) |  |
|---------|--------------------|---------------|-------------------|--|
| N1 986  |                    | 147           | 14.9%             |  |
| N2 1070 |                    | 79            | 7.4%              |  |
| N3      | 1463               | 161           | 11.0%             |  |
| N4      | 3323               | 355           | 10.7%             |  |
| Total   | 6842               | 742           | 10.8%             |  |

## Flight Schedule Re-Timing

#### Objective

- Reduce the number of passenger misconnections by adjusting departure times so that passenger connection times are correlated with the likelihood of a missed connection (disruption)
  - Add connection slack where it is need most

### Solution Approach

- Derive distributions from historical data for number of passengers disrupted for each connection
- Formulate and solve re-timing model that minimizes the number of disrupted passengers

## Computational Results

#### Network

• We use the same four networks, but add all flights together and form one network with total 278 flights.

## Model Building and Validation



## Computational Results

- Estimated reduction (30 minutes MCT) in total passenger delays:
  - 20% (30 minute time window)
  - 16% (20 minute time window)
  - 10% (10 minute time window)

| Time window       | Tot num of D-pax | Output | D-pax reduced | Improve (%) |
|-------------------|------------------|--------|---------------|-------------|
| ±15min(7 copies)  | 17,459           | 10,899 | 6,560 (37.6%) |             |
| ±15min(31 copies) | 17,459           | 10,865 | 6,594 (37.8%) | 0.52%       |
| ±10min(5 copies)  | 17,459           | 12,070 | 5,389 (30.9%) |             |
| ±10min(21 copies) | 17,459           | 12,056 | 5,403 (30.9%) | 0.26%       |
| ±5min(3 copies)   | 17,459           | 14,069 | 3,390 (19.4%) |             |
| ±5min(11 copies)  | 17,459           | 14,058 | 3,401 (19.5%) | 0.28%       |

### **Conclusions**

- Robustness considerations-
  - Same optimization techniques, new models and objectives, potentially significant impacts without increased planned costs
- Much more that can be done with robustness modeling and optimization, in many areas of schedule planning and recovery